plugin controller
for osTicket

RUN YOUR CUSTOM CODE
ON THE EVENT ‘fau WAHT

EVEN DEBUG WHEN
@ o om WA

Motherload for osTicket

05/06/2022
Aristotelis Joannou

https://www.cartmega.com

INTRODUCTION
ONLINE DEMO
INSTALLATION
TESTING

Client & Agent Side Demo
PLUGIN PAGE CONFIGURATION

Notification area

Allowed Signals

Enabled Plugins

Valid Plugins

Debugger

Disable Plugin Syntax Checking
CUSTOM PLUGIN DEVELOPMENT

Location
Naming convention
Compulsory variables & functions
Plugin example (plugin_test.php)
Motherload Capabilities
Functions
Variables
JQuery / Javascript
TOPICLISTS

SUPERLISTS
LICENSE VERIFICATION

SOLUTIONS TO PROBLEMS

PAGE 2

10

10
10
10
11
11
12
13

13
13
13
14
16
16
17
18
19

20

21

22

TOPICLISTS FOR
OSTICKET PAGE 3

'‘Don't write a new plugin...
Plug into motherload!"

for osTicket

'Plugin Creation & Handling
with debugging plus UR CUSTOM CODE
customer friendly Ruﬁg EVENT YOU WANT

on production servers!' ON T even pesuc WHENLAE

INTRODUCTION

Is a plugin controller that allows rapid plugin development in
osTicket. Have your custom plugins up and running in under 5 minutes,
to handle any osTicket event.

Motherload makes osTicket custom plugin development easy, fast,
enjoyable and bomb proof!

At the time when an osTicket event is fired a signal is sent out which is
caught by Motherload if configured to do so on the plugin configuration
page. It then checks to see if you have any custom plugins available and
enabled to handle this particular signal. If so, then Motherload sends all
signal related information to your custom plugin and allows it to run.

Runtime errors will appear in the osTicket syslog without bothering your
clients.

e Requires PHP version 7.2.x or higher. Proper operation cannot be guaranteed
with earlier versions.
e No core file modifications necessary!

https://www.cartmega.com/motherload-for-osticket.html
https://www.cartmega.com/motherload-for-osticket.html

PAGE 4

Cartmega demo website

&idemo

https://ostdemo.cartmega.com/
https://ostdemo.cartmega.com/

TOPICLISTS FOR
OSTICKET PAGE 5

INSTALLATION

Click the play button below to watch the
for Topiclists which shows how you can install and configure Motherload.
Alternatively you can follow the instructions on the following page.

®cartmega

\NSTALLATION /
’:;N FIGURATION +/
TESTING /

RUN YOUR CUSTOM CODE with Motherload, you can rapidly develop
N THE EVENT YOU WANT osTicket plugins in minutes instead of hours!
o) AND EVEN DEBUG WHEN LVE

S AA S ML T

@ A revolutionary solution for osTicket developers.
s www.cartmega.com

https://www.youtube.com/watch?v=x2aTi5Np5ZM
https://www.youtube.com/watch?v=x2aTi5Np5ZM

1. Motherload is available online here:

https://www.cartmeqga.com/motherload-for-osticket.html

Product Download

2. Download & Unzip.
a. Download our plugin.

(motherload_for_osTicket _v.x.x.x.zip)

ksl

[] Name

BB motherload_for_osTicket_v. 43zip

3. Upload Motherload.

PAGE 6

DOWNLOADS (9)

Motherload for osTicket
1.12.x»1.16.x

Version: 1.4.4
Updated: 04/06/2022

Date modified

22/05/2022 16:15

a. Extract the contents of motherload for_osTicket v.x.x.x.zip,

onto your hard drive.

b. Open the folder 'UPLOAD'
where you just extracted the
zip file.

c. FTP into your osTicket
installation & find the osTicket
root directory.

d. Select all files & folders within
the ‘UPLOAD’ folder (on your
computer) and upload all to the
osTicket root directory of your
FTP server.

1 Mame

include

scp

Name
api
apps
assets
css
images
include
is
kb
pages
scp
@account.php

@captcha.ph

Size

6 KB
2KB
2KB
16 KB
1 KB

Date modified

Changed

26/04/2022 19:26:51
21/04/2022 15:52:54
21/04/2022 15:52:54
21/04/2022 15:52:54
21/04/2022 15:52:54
28/04/2022 00:28:36
21/04/2022 15:52:57
21/04/2022 15:52:57
21/04/2022 15:52:57
25/05/2022 02:25:49
20/04/2022 14:21:06
20/04/2022 14:21:.06
20/04/2022 14:21:06
19/05/2022 20:04:18
20/04/2022 14:21:.06

Type

File folder

File folder

Rights
MWXT-Xr-X
TWXI-Xr-X
TWXI-Xr-X
MWXT-Xr-X
TWXI-Xr-X
TWXI-Xr-X
MWXT-Xr-X
TWXI-Xr-X
TWXI-Xr-X
MWXT-Xr-X
rw-r--r--
rw-r--r--
rw-r--r--
rw-r--r--
r

W-r--r--

https://www.cartmega.com/motherload-for-osticket.html

PAGE 7

4. Install Motherload in osTicket.
a. Login into osTicket.
b. Go to Admin panel > Manage > Plugins.
c. Click ‘Add New Plugin’ & click [Install] next to ‘osTicket Motherload'.
d

. To enable the plugin, place a check mark next to ‘osTicket Motherload'.
Click the ‘More’ button and click [Enable].

Currently Installed Plugins © AddNewPlugin | £ More
Plugin Name Version Status pEIY| @& Enable
osTicket MotherlLoad 144 Disabled 6/4/22 @ Disable
() Real Dynamic Lists 112 Enabled 4/28/2 U DeEte
(0 | Real Dynamic Lists MS SQL 1.1.3 Enabled 4/28/22 3:09 AM
[Rejection Notifier 1.2.2 Disabled 4/28/22 4:25 PM

Select: All None Toggle
Page: [1]

e. Click on ‘osTicket Motherload’ to enter the plugin settings.
Just make sure that there are no errors reported.

2 All checks have been successful.

Debugger: Everything is looking good!

Health check

Motherload requires no customization. All configuration is done on the plugin
page. Error reporting is done on the plugin page but also in the osTicket syslog.

PAGE 8

5. Install the demo plugin (plugin_demo.php).
a. Login into osTicket.
Go to Admin panel > Manage > Plugins > osTicket MotherLoad.
In Allowed Signals: add 'ticket.create.before'.
In Enabled Plugins: add 'plugin_demo.

®© o0 o

Click [Save]. You should see no errors being reported in the debugger.

2 All checks have been successful.

Allowed Signals:
Choose the signals that your plugins are

allowed to service.

ticket.create.before

Enabled Plugins:
Only enabled plugins will be allowed to

rur

plugin_demo

Valid Plugins: Valid Plugins:
Plugins that passed all tests
1. []
2. [ticket.create.before]
Jdemo/plugin_dema.php
3. [1
4. []
5. [1
6. [1
L
Disable Plugin Syntax Checking:]
Default:OFF
Debugger: Everything is looking good!
Health check

Congratulations. You have completed the installation of Motherload.

You can also uninstall it by going to Admin panel > Manage > Plugins, place a
check mark next to ‘osTicket Motherload’, click the ‘More’ button and click [Delete].

If you want to disable a plugin, just remove it from the list of enabled plugins by
clicking the [x] next to the plugin tag and then clicking [Save]. If you remove a plugin
it is a good idea to also remove the associated signal from the ‘Allowed Signals’ list,
If it is not being used by other enabled plugins.

You can now proceed to test the Motherload demo.

TOPICLISTS FOR
OSTICKET PAGE9

TESTING

Client & Agent Side Demo

Visit the client side of your osTicket installation and click ‘Open a New Ticket'.
Scroll to the bottom of the page and click ‘Create Ticket'.

Your email is not "support@cartmega.com"! Please try again.

You should see a modal pop-up alerting you to the fact that the email address you
entered does not qualify for the creation of a new ticket. For the ticket to be created
successfully you should enter ‘support@cartmega.com’ in the email field.

When you click ‘OK’ to dismiss the warning, you should also see the same warning
message in a yellow rectangle just above the form title. Just below it there should be
an error message in a similar red rectangle. Finally, at the very top of the page there
should be a plain text message from dbecho (debug echo message).

The same exact things should happen on the agent side of osTicket.

TOPICLISTS FOR
OSTICKET PAGE 10

PLUGIN PAGE CONFIGURATION

The plugin configuration page includes the following:

Notification area

2 All checks have been successful.

Motherload will report its own messages here.

Allowed Signals

Allowed Signals: % ticket te.bef
Choose the signals that your plugins are [icket.create. ore]

allowed to service.

Choose the signals that your plugins are allowed to service. If your plugin requires
signals 'session.close' and 'ticket.create.before' to function, then you should select both
of these plugins to appear in this list.

Motherload will subscribe to all these signals in osTicket and if a signal is triggered, it
will pass handling over to the plugins enabled to handle it.

Enabled Plugins
Enabled Plugins:

Only enabled plugins will be allowed to
run.

Choose the plugins you want to enable. Each plugin is associated with one or more
signals. If the plugin is enabled as well as its associated signals, then the plugin will be
able to handle the signal when that is triggered.

NOTE: The lists ‘Allowed [ticketcreatebefore)

Signals’ as well as ‘Enabled sess L
Plugins’ support auto-complete = b

for fast searching within the
lists. After clicking within the
list, just start typing.

PAGE 11

NOTE: If you want to disable a signal or plugin, just remove it from the list by clicking
the [X] next to its tag. If you remove a plugin it is a good idea to also remove the
associated signal from the ‘Allowed Signals’ list, if it is not being used by other enabled
plugins.

Valid Plugins: Valid Plugins:
Plugins that passed all tests
1 []
2. [ticket.create.before]
/demo/plugin_demo.php
3. []
4. [1
5. []
6. [1
lt

In this section Motherload will present a list of recognized plugins inside the
/include/plugins/motherload/plugins/ folder along with some useful information.

It is important to note that the signals required by each plugin are reported next to the
plugin name as shown below.

1 []

When you enable a plugin, it will appear in green.

1. [threadentry.created]

NOTE: Just because a plugin appears enabled does not mean that it will also be
functional. Do not forget to also enable any signals associated with it.

Debugger: Problems were found:
Health check!
1. Error::
ML::motherload - Plugin class invalid: Plugin will not be loaded
A /include/plugins/motherload/plugin
s/demo/plugin_manipulateTichketByEmail.php'
The class found "plugin_manipulateTicketByEmail' was unexpected. Was expecting
'plugin_manipulateTichketByEmail'

Here Motherload will report any issues after checking the accessibility and executability
of any available plugins.

Any errors must be fixed before a plugin will become available to be enabled.

PAGE 12

Disable Plugin Syntax Checking: Syntax checking is currently disabled (most errors will still be reported in the debugger below)
Default:OFF

Motherload performs syntax checking on your plugins by making use of the PHP 'exec'
command. In certain server setups this functionality is disabled, thus causing the
following error message immediately after the installation of Motherload:

Debugger: Problems were found:
Health check!
1. Error::
ML::motherload - Plugin syntax error: Plugin
Yinclude/plugins/motherload/plugins\demo\plugin_demo.php’ failed syntax checking and was not
loaded.

Array

(

[@] =» Could not open input file:
*/include/plugins/motherload/plugins\demo\plugin_ demo.php’
)

To overcome the inability of the server to allow this functionality you can disable syntax
checking in Motherload by ticking the check box and saving.

When disabled, Motherload will not conduct syntax checking on your plugin scripts
before trying to include and then execute them.

This should not be a major setback since most errors are also caught and reported in
the debugger when Motherload later attempts to include the script.

Disabling plugin syntax checking is useful mostly for shared hosting or other
installations where PHP suffers CLI execution limitations.

If the debugger below is showing "Plugin syntax error: [0] => Could not open input
file: path-to-script.php', then you can bypass syntax checking by checking this
option.

You can also confirm the problem programmatically by executing php -1 path-to-
script.php wWhich should return “could not open input file: path-to-script.php".

PAGE 13

Motherload is a plugin controller designed for the specific purpose of assisting in the
rapid application development of plugins for the osTicket platform.

In order for us to develop Motherload plugins we should keep the following in mind:

All plugin files must be placed in their own folder in the following path:
INCLUDE_DIR/plugins/motherload/plugins/

Plugins placed in other folders will not be processed!
Follow the naming convention below to avoid clashes.
NOTE: Each folder may contain any number of plugins.

Folder name Can be anything, but to avoid confusion you may consider using the
same name as the name of your plugin (pluginname). The folder

name may contain spaces but your pluginname cannot.

File name plugin_pluginname.php (NO spaces allowed)

Class name ¢class pluginname extends motherloadPlugin {}

Inside your plugin class you must have the following:
const signalConnect = "{enter here the signal you want}";
public function run() {enter here what you want your plugin to do}

protected $debug_ip = {true or false or array(xxx.xxx.xxx.xxx)}; (optional)

PAGE 14

Open folder 7include/plugins/motherload/plugins and create a new folder 'test'.
Open the folder you just created and create a file called 'plugin_test.php'.
Open the file and paste the following code (without the line numbers) and then save.

0. <?php

1. class plugin_test extends motherloadPlugin {

2. const signalConnect = "ticket.create.before”;

3. public function run() {

4. $this->addErr("Ticket failed.","This is a Motherload test plugin.®);
5. return false;

6. be

7.}

Navigate to the Motherload plugin page in osTicket and enable the plugin as well as
the signal it requires ("ticket.create.before”) and click [Save Changes].

Visit the client side of your osTicket installation and click ‘Open a New Ticket'. Scroll
to the bottom of the page and click ‘Create Ticket'.

You should see the following:

SU PPORT CENTER Guest User | Sign In

Support Ticket System

(it Support Center Home [F Knowledgebase) Open a New Ticket [y Check Ticket Status

& Unable to create a ticket This is a Motherload test plugin.

Open a New Ticket

Please fill in the form below to open a new ticket.

Contact Information

Email Address *

[@)

Email Address is a required field

Full Name *

This simple plugin takes under 2 minutes to create and immediately can interact
with the osTicket system. You simply cannot beat that kind of perfomance!

PAGE 15

What our test plugin does:

1.

Here we define that the code that follows is a plugin for motherload. Our plugin
class has a name which connects it to the filename our code is in.

The signalConnect constant informs Motherload that our plugin wants to run
whenever the 'ticket.create.before’ signal is triggered.

The run() function is what Motherload will call when the signal is triggered, so we
will place our code in here.

Here we add an error to osTicket's error array with the purpose of displaying it to
the user on the new ticket creation page.

We exit our function by returning a false value, thus informing osTicket that
something went wrong with the ticket creation process. osTicket will therefore
check its error array for any messages to show to the user and will find the one
we added there previously.

Sky is the limit with what you can do with Motherload.

osTicket plugin development has just become child’s play.

No more having to design an interface and deal with all the intricacies of plugin
design. The developer can therefore concentrate on writing code.

For those plugins which do not require a user interface they can be implemented in
minutes in pure PHP and with a few variables for configuration.

PAGE 16

Motherload Capabilities
In the previous section we saw how we can create a Motherload plugin.
What capabilities does Motherload provide for use in our plugins?

To be used inside the class definition:
protected $debug_ip = true;// true or false or array(™XXX.XXX.XXX.XXX")
The $debug_ip value controls who can see the dbgecho messages.

e True (everyone can see)

e False (no one can see)

o array/("XXX.XXX.XXX.XXX', 'XXX.XXX.XXX.XxX') (IP restricted)

To be used inside the run() function:
$this->dbgecho(“message”)

Useful when you are forced to debug your plugin in a live environment
without any clients seeing your debug messages.

$this->ostlog(LOG_WARN, "Title", "Message");

You can easily write to the osTicket syslog.

$this->addErr("Title", "Message®);

Add an osTicket error to its error array. The errors are shown by
osTicket near the top of the page only if you disrupt a process like ticket.

e.g. when you attach your plugin to ticket.create.before, you can use the
following code to induce an error in osTicket.

it ($ POST) {
$this->addErr("Title", "Message~");
return false;

+
$this->addAlert("Title", "Message®); // use addDialog for pop-up only

Show a modal pop-up alert to the user and a warning on the page.
$this->dbgecho("<pre>" _print_r($this->ml,2)."</pre>7);

Show all data in the Motherload object.

Motherload variables:

PAGE 17

The variables below are always available to any Motherload plugin.

Variable

Description

$this->ml

$this->parent
$this->pluginfo
$this->url
$this->errors
$this->signalConnect

osTicket variables:

When a signal is triggered, osTicket sends the object
involved and possibly some data involved in the event.
$this->ml->signal["object™]

$this->ml->signal[“data"]

An explanation of the above objects is beyond the scope of
this guide. ...more information on plugin development.

Motherload also enriches this object with:
$this->ml->cdata (contains data from posted fields)
$this->ml->_POST (contains POST information)

access to all motherload objects (the parent of our plugin)
access to plugin info

access to current URL information

access to the Motherload error array

contains the actual signal name which was just triggered

Since we are working in osTicket, we may also be interested in its own variables.

To find out what osTicket global variables are available to work with, use:
$this->dbgecho("<pre>" .print_r(array_keys($GLOBALS),2)."</pre>");

Variable Description

$ost | access to osTicket information & logging

$chg | access to osTicket configuration

$ db access to the active mysqli connection

$thisclient | access to the osTicket logged-in client object

$thisstaff | access to the osTicket logged-in staff object

In order to work with an osTicket global variable we have to first import it into our
own run() function like this:

global $ost,$cfg,$thisclient,$errors;

https://github.com/poctob/OSTEquipmentPlugin/wiki/Plugin-Development-Introduction

PAGE 18

Furthermore, in order to work with some osTicket objects we have to remember
to include necessary files before our plugin class() declaration. e.g.

include _once(INCLUDE DIR."class.ticket.php®);

require_once(INCLUDE_DIR. "class.task.php®);

include_once INCLUDE_DIR . "class.thread_actions.php”;
require_once(INCLUDE_DIR."class.staff.php”);

You can therefore customize the behavior of your Motherload plugin based on
URL, client, staff and much more! This means your options are endless.

When Motherload is triggered to run one of its plugins, it will also attempt to inject
some Javascript into the web page involved. The reason is in order to support
commands such as s$this->addAlert and $this->addDialog which are made
available to all plugins.

Console Issues What's New X
P ® top¥Y @ | Filter Default levels ¥ | 2 [ssues: B 2 o
motherload JQ ready. open.php:66

b

When Motherload fully loads in the browser it outputs the above message in the
developer’s console and can be seen by pressing F12.

Any errors regarding this client side functionality will also be displayed here.

Of course your own plugin can also inject Javascript into the web page. All you
have to do is echo a <script> section from within your run() function.

class plugin_test extends motherloadPlugin {
const signalConnect = "ticket.create.before”;
public function run() {

$this->addErr("Unable to create a ticket","This is a Motherload
test plugin.®);

echo "<script>alert("hello world"™)</script>";
return false;

TOPICLISTS FOR
OSTICKET PAGE 19

ron Scartmgg
P

[Towics

~ Topiclists
: plugin for osTicket
(includes osTicket Motherload)

It is finally here...
the holy grail
in the ticket creation process! HELP TOPIC, INTERLINKED,

1C, AJAX LISTS
DmApﬁw PROGRAMMABLE!

e
" i ’ Iy s =B 0B ® —
for opening the ticket

TOPICLISTS

Enhance your Help Topics with multiple, custom, smart, dynamic,
interlinked and nested drop-down lists which are updated with ajax from
any database.

Check out the video and online demo below:

https://www.cartmega.com/topiclists-for-osticket.html
https://ostdemo.cartmega.com/
https://www.youtube.com/watch?v=Y7BRQSrpwXU

TOPICLISTS FOR
OSTICKET PAGE 20

DOpen a Now Ticket
Fieae 39 0 T S0 DERW 10 COON B few SOAAT

Contast information
Email Address

e —
Fll W ©

[Jode Do

(includes osTicket Motherload) | "™ g0

INTERLINKED, 'dROUPU?S
DYNAMIC A sae

SUPERLISTS

What Topiclists can do for Help Topics, Superlists can do for Forms.

Enhance your forms with multiple, custom, smart, dynamic, interlinked
and nested drop-down lists which are updated with ajax from any
database. The user selections are saved in their ticket.

Check out the video and online demo below:

https://www.cartmega.com/superlists-for-osticket.html
https://www.youtube.com/watch?v=2sZ8SzBqmaU
https://ostdemo.cartmega.com/

TOPICLISTS FOR
OSTICKET PAGE 21

SUPPORT CENTER
Support Tickat System

L3 Open a tew Tiket | L) Tickets (0]

[Ay GONEACES US NOW 10 Tecehve 0% off 6N you! Suppor ienewal
Open a New Ticket

‘Fiease fll in the form belaw o open a new ticket.

VERIFY CLIENT'S LICENSE
BEFORE PROVIDING SUPPORT

LICENSE VERIFICATION

Verifies that your customer holds a valid license and so allow the
provision of customer support. This makes it the ideal solution for sellers
of software and other digital products on multiple markets online.

As seen on our own support ticket system!

Check out the video and online demo below:

https://www.cartmega.com/license-verification-for-osticket.html
https://ostdemo.cartmega.com/
https://www.youtube.com/watch?v=e73B71VWUTw

TOPICLISTS FOR
OSTICKET PAGE 22

Problem: | The following message may appear in the Motherload plugin page:
Error::

ML::motherload - Plugin syntax error: Plugin ... \plugin_demo.php*
failed syntax checking and was not loaded.

Array

([0] => Could not open input file:
../plugins\demo\plugin_demo.php)

Description: | As the message suggests, Motherload attempted to execute a syntax
check on the plugin but could not open the file. This is not a
permissions issue because the readability test was already checked
before the syntax check. The problem here most probably lies with the
web server being unable to execute the 'php -I <path-to-file.php>"
command.

This usually happens on shared hosting or other installations where
PHP suffers CLI execution limitations.

Solution:

Problem:

Description:

Solution:

PAGE 23

You can confirm the problem programmatically by executing <php -I
‘path-to-script.php'> which should return '‘Could not open input file:
path-to-script.php'.

Since version 1.4.1, the user can disable syntax checking from the
plugin page. When disabled, Motherload will not conduct syntax
checking on your plugin scripts before trying to include and then
execute them. This should not be a major setback since most errors
are also caught and reported in the debugger when Motherload later
attempts to include the script.

"HTTP ERROR 500" in the browser, with the following error showing in the

Motherload plugin page and/or in your web server log:

PHP Parse error: syntax error, unexpected “"const® (T_CONST),
expecting variable (T_VARIABLE) in
<PATH>/include/plugins/motherload/motherload.php on line 77

Class constant visibility modifiers were introduced in PHP 7.1.0. Any
version before it will throw syntax error.

PHP implementations may come with limitations in functionality even if
the version is the same.

Check and upgrade the PHP version on your server.
or
Replace "public const® into "const® on the line mentioned in the error.

Problem:

Description:

Solution:

PAGE 24

The following messages may appear in the Motherload plugin page:
Error::

ML::motherload - Plugin syntax error: Plugin ".\plugin_demo.php*
failed syntax checking and was not loaded.

Array
(

[0] => "php" is not recognhized as an internal or external
command,

[1] => operable program or batch file.

)
Or

Error::

ML: :motherload - Plugin syntax error: Plugin ".\plugin_demo.php*
failed syntax checking and was not loaded.

Array

(
)

As the message suggests, PHP is required but not being recognized.
Sometimes the webserver, IIS in this example, is not correctly
configured to run PHP.

Make sure PHP is working properly on your server.

Some IIS users have reported that having installed "Microsoft Visual
C++ 2015 Redistributable Update 3", fixed their problem.

Their previous version of MSVC++ was making PHP itself fail (even
typing “php* in cmd gave them an error).

TOPICLISTS FOR

OSTICKET

PAGE 25

Why choose Cartmega?

00000

Affordable Pricing:

We maintain transparency in our pricing and we always remain competitive, so that you can reap the benefits.

Security and Performance:

When developing our software, system security is our top priority, while never compromising on performance.
Ordering from us is 100% safe and secure so you can rest easy. Your personal details are never shared, sold or rented to

anyone either.

100% Satisfaction:

We insist that you love everything you buy from us.

If you're unhappy for any reason whatsoever, just let us know and we'll bend over backwards to make things right again.

World-Class Service:

All our products come with amazing service. Our online ticketing system and helpful staff will make sure of it.

s
Money-Back Guarantee:

You get a full 30 days to get your money back, for all downloadable products. If it simply will not work on your setup and
we cannot fix the problem then we'll cheerfully refund you every cent. For everything else, you get a full 14 day no-

questions asked, money back guarantee.

Easy Returns:

Returns are easy, simply log into your account and fill in the returns form for fast processing. We'll get you a refund in a

shap!
Let's not forget
The Essentials
USER GUIDE LIFETIME UPDATES PREMIUM SUPPORT

Full instructions are
included with every product,
which consist of installation
and usage guidelines and

other relevant information.

G

With free updates for the
lifetime of the product

you need not worry about
software maintenance. We

got you covered!

All customers get access to
world-class support via our
online ticketing system for

amazing after-sales service

PAGE 26

CONTACT US

Still Can't Decide?!

Just in case you still have questions or not sure that what
you've chosen is suitable, no worries. Contact us, we are here

to help.

19 CartMega. All rights reserved.

43

www.cartmega.com

http://www.cartmega.com/
https://www.cartmega.com/contact

	INTRODUCTION
	ONLINE DEMO
	INSTALLATION
	TESTING
	Client & Agent Side Demo
	Notification area
	Allowed Signals
	Enabled Plugins
	Valid Plugins
	Debugger
	Disable Plugin Syntax Checking
	Location
	Naming convention
	Compulsory variables & functions
	Plugin example (plugin_test.php)

	PLUGIN PAGE CONFIGURATION
	CUSTOM PLUGIN DEVELOPMENT
	Motherload Capabilities
	Functions
	Variables
	JQuery / Javascript

	TOPICLISTS
	SUPERLISTS
	LICENSE VERIFICATION
	SOLUTIONS TO PROBLEMS

