

Motherload for osTicket
by Cartmega
05/06/2022
Aristotelis Joannou

https://www.cartmega.com

TOPICLISTS FOR
OSTICKET

 PAGE 2

Table of Contents

INTRODUCTION 3

ONLINE DEMO 4

INSTALLATION 5

TESTING 9

Client & Agent Side Demo 9
PLUGIN PAGE CONFIGURATION 10

Notification area 10

Allowed Signals 10
Enabled Plugins 10

Valid Plugins 11
Debugger 11

Disable Plugin Syntax Checking 12

CUSTOM PLUGIN DEVELOPMENT 13

Location 13

Naming convention 13

Compulsory variables & functions 13
Plugin example (plugin_test.php) 14

Motherload Capabilities 16

Functions 16
Variables 17

JQuery / Javascript 18

TOPICLISTS 19

SUPERLISTS 20

LICENSE VERIFICATION 21

SOLUTIONS TO PROBLEMS 22

TOPICLISTS FOR
OSTICKET

 PAGE 3

INTRODUCTION
Motherload is a plugin controller that allows rapid plugin development in
osTicket. Have your custom plugins up and running in under 5 minutes,
to handle any osTicket event.
Motherload makes osTicket custom plugin development easy, fast,
enjoyable and bomb proof!
At the time when an osTicket event is fired a signal is sent out which is
caught by Motherload if configured to do so on the plugin configuration
page. It then checks to see if you have any custom plugins available and
enabled to handle this particular signal. If so, then Motherload sends all
signal related information to your custom plugin and allows it to run.
Runtime errors will appear in the osTicket syslog without bothering your
clients.
• Requires PHP version 7.2.x or higher. Proper operation cannot be guaranteed

with earlier versions.
• No core file modifications necessary!

https://www.cartmega.com/motherload-for-osticket.html
https://www.cartmega.com/motherload-for-osticket.html

TOPICLISTS FOR
OSTICKET

 PAGE 4

ONLINE DEMO

Did you know that there is an online demo of various Motherload plugins?
If you have not had a chance to try Motherload, you can check it out right now!

Of course Motherload is the plugin controller running behind the scenes in these
demos. Nevertheless these plugins share and exhibit all Motherload features and are

prime examples of what can be achieved.

When you click the button below you will be taken to the Cartmega demo website,
where you can test drive Motherload plugins like
Topiclists, Superlists and License Verification.

https://ostdemo.cartmega.com/
https://ostdemo.cartmega.com/

TOPICLISTS FOR
OSTICKET

 PAGE 5

INSTALLATION

Click the play button below to watch the installation video
for Topiclists which shows how you can install and configure Motherload.

Alternatively you can follow the instructions on the following page.

https://www.youtube.com/watch?v=x2aTi5Np5ZM
https://www.youtube.com/watch?v=x2aTi5Np5ZM

TOPICLISTS FOR
OSTICKET

 PAGE 6

1. Motherload is available online here:
https://www.cartmega.com/motherload-for-osticket.html

2. Download & Unzip.
a. Download our plugin.

(motherload_for_osTicket _v.x.x.x.zip)

3. Upload Motherload.
a. Extract the contents of motherload_for_osTicket_v.x.x.x.zip,

onto your hard drive.

b. Open the folder 'UPLOAD'
where you just extracted the
zip file.

c. FTP into your osTicket
installation & find the osTicket
root directory.

d. Select all files & folders within
the ‘UPLOAD’ folder (on your
computer) and upload all to the
osTicket root directory of your
FTP server.

https://www.cartmega.com/motherload-for-osticket.html

TOPICLISTS FOR
OSTICKET

 PAGE 7

4. Install Motherload in osTicket.
a. Login into osTicket.
b. Go to Admin panel > Manage > Plugins.
c. Click ‘Add New Plugin’ & click [Install] next to ‘osTicket Motherload’.
d. To enable the plugin, place a check mark next to ‘osTicket Motherload’.

Click the ‘More’ button and click [Enable].

e. Click on ‘osTicket Motherload’ to enter the plugin settings.

Just make sure that there are no errors reported.

Motherload requires no customization. All configuration is done on the plugin
page. Error reporting is done on the plugin page but also in the osTicket syslog.

TOPICLISTS FOR
OSTICKET

 PAGE 8

5. Install the demo plugin (plugin_demo.php).
a. Login into osTicket.
b. Go to Admin panel > Manage > Plugins > osTicket MotherLoad.
c. In Allowed Signals: add 'ticket.create.before'.
d. In Enabled Plugins: add 'plugin_demo.
e. Click [Save]. You should see no errors being reported in the debugger.

Congratulations. You have completed the installation of Motherload.

You can also uninstall it by going to Admin panel > Manage > Plugins, place a
check mark next to ‘osTicket Motherload’, click the ‘More’ button and click [Delete].
If you want to disable a plugin, just remove it from the list of enabled plugins by
clicking the [x] next to the plugin tag and then clicking [Save]. If you remove a plugin
it is a good idea to also remove the associated signal from the ‘Allowed Signals’ list,
if it is not being used by other enabled plugins.
You can now proceed to test the Motherload demo.

TOPICLISTS FOR
OSTICKET

 PAGE 9

TESTING

Client & Agent Side Demo
Visit the client side of your osTicket installation and click ‘Open a New Ticket’.
Scroll to the bottom of the page and click ‘Create Ticket’.

You should see a modal pop-up alerting you to the fact that the email address you
entered does not qualify for the creation of a new ticket. For the ticket to be created
successfully you should enter ‘support@cartmega.com’ in the email field.
When you click ‘OK’ to dismiss the warning, you should also see the same warning
message in a yellow rectangle just above the form title. Just below it there should be
an error message in a similar red rectangle. Finally, at the very top of the page there
should be a plain text message from dbecho (debug echo message).
The same exact things should happen on the agent side of osTicket.

TOPICLISTS FOR
OSTICKET

 PAGE 10

PLUGIN PAGE CONFIGURATION

The plugin configuration page includes the following:

Notification area

Motherload will report its own messages here.

Allowed Signals

Choose the signals that your plugins are allowed to service. If your plugin requires
signals 'session.close' and 'ticket.create.before' to function, then you should select both
of these plugins to appear in this list.
Motherload will subscribe to all these signals in osTicket and if a signal is triggered, it
will pass handling over to the plugins enabled to handle it.

Enabled Plugins

Choose the plugins you want to enable. Each plugin is associated with one or more
signals. If the plugin is enabled as well as its associated signals, then the plugin will be
able to handle the signal when that is triggered.

NOTE: The lists ‘Allowed
Signals’ as well as ‘Enabled
Plugins’ support auto-complete
for fast searching within the
lists. After clicking within the
list, just start typing.

TOPICLISTS FOR
OSTICKET

 PAGE 11

NOTE: If you want to disable a signal or plugin, just remove it from the list by clicking
the [x] next to its tag. If you remove a plugin it is a good idea to also remove the
associated signal from the ‘Allowed Signals’ list, if it is not being used by other enabled
plugins.

Valid Plugins

In this section Motherload will present a list of recognized plugins inside the
/include/plugins/motherload/plugins/ folder along with some useful information.
It is important to note that the signals required by each plugin are reported next to the
plugin name as shown below.

When you enable a plugin, it will appear in green.

NOTE: Just because a plugin appears enabled does not mean that it will also be
functional. Do not forget to also enable any signals associated with it.

Debugger

Here Motherload will report any issues after checking the accessibility and executability
of any available plugins.
Any errors must be fixed before a plugin will become available to be enabled.

TOPICLISTS FOR
OSTICKET

 PAGE 12

Disable Plugin Syntax Checking

Motherload performs syntax checking on your plugins by making use of the PHP 'exec'
command. In certain server setups this functionality is disabled, thus causing the
following error message immediately after the installation of Motherload:

To overcome the inability of the server to allow this functionality you can disable syntax
checking in Motherload by ticking the check box and saving.
When disabled, Motherload will not conduct syntax checking on your plugin scripts
before trying to include and then execute them.
This should not be a major setback since most errors are also caught and reported in
the debugger when Motherload later attempts to include the script.
Disabling plugin syntax checking is useful mostly for shared hosting or other
installations where PHP suffers CLI execution limitations.
If the debugger below is showing 'Plugin syntax error: [0] => Could not open input
file: path-to-script.php', then you can bypass syntax checking by checking this
option.
You can also confirm the problem programmatically by executing php -l path-to-
script.php which should return 'Could not open input file: path-to-script.php'.

TOPICLISTS FOR
OSTICKET

 PAGE 13

CUSTOM PLUGIN DEVELOPMENT

Motherload is a plugin controller designed for the specific purpose of assisting in the
rapid application development of plugins for the osTicket platform.
In order for us to develop Motherload plugins we should keep the following in mind:

Location

All plugin files must be placed in their own folder in the following path:
INCLUDE_DIR/plugins/motherload/plugins/

Plugins placed in other folders will not be processed!
Follow the naming convention below to avoid clashes.
NOTE: Each folder may contain any number of plugins.

Naming convention

Folder name Can be anything, but to avoid confusion you may consider using the

same name as the name of your plugin (pluginname). The folder

name may contain spaces but your pluginname cannot.

File name plugin_pluginname.php (no spaces allowed)

Class name class pluginname extends motherloadPlugin {}

Compulsory variables & functions

Inside your plugin class you must have the following:
const signalConnect = '{enter here the signal you want}';

public function run() {enter here what you want your plugin to do}

protected $debug_ip = {true or false or array(xxx.xxx.xxx.xxx)}; (optional)

TOPICLISTS FOR
OSTICKET

 PAGE 14

Plugin example (plugin_test.php)
Open folder /include/plugins/motherload/plugins and create a new folder 'test'.
Open the folder you just created and create a file called 'plugin_test.php'.
Open the file and paste the following code (without the line numbers) and then save.
0. <?php
1. class plugin_test extends motherloadPlugin {
2. const signalConnect = 'ticket.create.before';

3. public function run() {

4. $this->addErr('Ticket failed.','This is a Motherload test plugin.');
5. return false;
6. }
7. }

Navigate to the Motherload plugin page in osTicket and enable the plugin as well as
the signal it requires ('ticket.create.before') and click [Save Changes].
Visit the client side of your osTicket installation and click ‘Open a New Ticket’. Scroll
to the bottom of the page and click ‘Create Ticket’.
You should see the following:

This simple plugin takes under 2 minutes to create and immediately can interact
with the osTicket system. You simply cannot beat that kind of perfomance!

TOPICLISTS FOR
OSTICKET

 PAGE 15

What our test plugin does:
1. Here we define that the code that follows is a plugin for motherload. Our plugin

class has a name which connects it to the filename our code is in.
2. The signalConnect constant informs Motherload that our plugin wants to run

whenever the 'ticket.create.before' signal is triggered.
3. The run() function is what Motherload will call when the signal is triggered, so we

will place our code in here.
4. Here we add an error to osTicket’s error array with the purpose of displaying it to

the user on the new ticket creation page.
5. We exit our function by returning a false value, thus informing osTicket that

something went wrong with the ticket creation process. osTicket will therefore
check its error array for any messages to show to the user and will find the one
we added there previously.

Sky is the limit with what you can do with Motherload.
osTicket plugin development has just become child’s play.
No more having to design an interface and deal with all the intricacies of plugin
design. The developer can therefore concentrate on writing code.
For those plugins which do not require a user interface they can be implemented in
minutes in pure PHP and with a few variables for configuration.

TOPICLISTS FOR
OSTICKET

 PAGE 16

Motherload Capabilities
In the previous section we saw how we can create a Motherload plugin.
What capabilities does Motherload provide for use in our plugins?

Functions

To be used inside the class definition:
protected $debug_ip = true; // true or false or array('xxx.xxx.xxx.xxx')

The $debug_ip value controls who can see the dbgecho messages.
• True (everyone can see)
• False (no one can see)
• array('xxx.xxx.xxx.xxx', 'xxx.xxx.xxx.xxx') (IP restricted)

To be used inside the run() function:
$this->dbgecho(‘message’)

 Useful when you are forced to debug your plugin in a live environment
without any clients seeing your debug messages.

$this->ostlog(LOG_WARN,'Title','Message');

 You can easily write to the osTicket syslog.

$this->addErr('Title','Message');

 Add an osTicket error to its error array. The errors are shown by
osTicket near the top of the page only if you disrupt a process like ticket.
e.g. when you attach your plugin to ticket.create.before, you can use the
following code to induce an error in osTicket.
if ($_POST) {

 $this->addErr('Title','Message');

 return false;

}

$this->addAlert('Title','Message'); // use addDialog for pop-up only

Show a modal pop-up alert to the user and a warning on the page.

$this->dbgecho('<pre>'.print_r($this->ml,2).'</pre>');

 Show all data in the Motherload object.

TOPICLISTS FOR
OSTICKET

 PAGE 17

Variables
Motherload variables:
The variables below are always available to any Motherload plugin.

Variable Description
$this->ml When a signal is triggered, osTicket sends the object

involved and possibly some data involved in the event.
$this->ml->signal['object']

$this->ml->signal['data']

An explanation of the above objects is beyond the scope of
this guide. …more information on plugin development.
Motherload also enriches this object with:
$this->ml->cdata (contains data from posted fields)

$this->ml->_POST (contains POST information)

$this->parent access to all motherload objects (the parent of our plugin)
$this->pluginfo access to plugin info

$this->url access to current URL information
$this->errors access to the Motherload error array

$this->signalConnect contains the actual signal name which was just triggered

osTicket variables:
Since we are working in osTicket, we may also be interested in its own variables.
To find out what osTicket global variables are available to work with, use:
$this->dbgecho('<pre>'.print_r(array_keys($GLOBALS),2).'</pre>');

Variable Description

$ost access to osTicket information & logging
$chg access to osTicket configuration
$_db access to the active mysqli connection

$thisclient access to the osTicket logged-in client object
$thisstaff access to the osTicket logged-in staff object

In order to work with an osTicket global variable we have to first import it into our
own run() function like this:
global $ost,$cfg,$thisclient,$errors;

https://github.com/poctob/OSTEquipmentPlugin/wiki/Plugin-Development-Introduction

TOPICLISTS FOR
OSTICKET

 PAGE 18

Furthermore, in order to work with some osTicket objects we have to remember
to include necessary files before our plugin class() declaration. e.g.
include_once(INCLUDE_DIR.'class.ticket.php');

require_once(INCLUDE_DIR.'class.task.php');

include_once INCLUDE_DIR . 'class.thread_actions.php';

require_once(INCLUDE_DIR.'class.staff.php');

You can therefore customize the behavior of your Motherload plugin based on
URL, client, staff and much more! This means your options are endless.

JQuery / Javascript
When Motherload is triggered to run one of its plugins, it will also attempt to inject
some Javascript into the web page involved. The reason is in order to support
commands such as $this->addAlert and $this->addDialog which are made
available to all plugins.

When Motherload fully loads in the browser it outputs the above message in the
developer’s console and can be seen by pressing F12.
Any errors regarding this client side functionality will also be displayed here.

Of course your own plugin can also inject Javascript into the web page. All you
have to do is echo a <script> section from within your run() function.

class plugin_test extends motherloadPlugin {

 const signalConnect = 'ticket.create.before';

 public function run() {

$this->addErr('Unable to create a ticket','This is a Motherload
test plugin.');

 echo '<script>alert("hello world")</script>';

 return false;

 }

}

TOPICLISTS FOR
OSTICKET

 PAGE 19

TOPICLISTS
Enhance your Help Topics with multiple, custom, smart, dynamic,
interlinked and nested drop-down lists which are updated with ajax from
any database.

Check out the video and online demo below:

https://www.cartmega.com/topiclists-for-osticket.html
https://ostdemo.cartmega.com/
https://www.youtube.com/watch?v=Y7BRQSrpwXU

TOPICLISTS FOR
OSTICKET

 PAGE 20

SUPERLISTS
What Topiclists can do for Help Topics, Superlists can do for Forms.
Enhance your forms with multiple, custom, smart, dynamic, interlinked
and nested drop-down lists which are updated with ajax from any
database. The user selections are saved in their ticket.

Check out the video and online demo below:

https://www.cartmega.com/superlists-for-osticket.html
https://www.youtube.com/watch?v=2sZ8SzBqmaU
https://ostdemo.cartmega.com/

TOPICLISTS FOR
OSTICKET

 PAGE 21

LICENSE VERIFICATION
Verifies that your customer holds a valid license and so allow the
provision of customer support. This makes it the ideal solution for sellers
of software and other digital products on multiple markets online.
As seen on our own support ticket system!

Check out the video and online demo below:

https://www.cartmega.com/license-verification-for-osticket.html
https://ostdemo.cartmega.com/
https://www.youtube.com/watch?v=e73B71VWUTw

TOPICLISTS FOR
OSTICKET

 PAGE 22

SOLUTIONS TO PROBLEMS

PLEASE NOTE: You should also check the 'Common Problems' section in the readme
file for possible errors and solutions, since it is more current.

Problem: The following message may appear in the Motherload plugin page:

Error::

ML::motherload - Plugin syntax error: Plugin '... \plugin_demo.php'
failed syntax checking and was not loaded.

Array

([0] => Could not open input file:
'…/plugins\demo\plugin_demo.php')

Description: As the message suggests, Motherload attempted to execute a syntax
check on the plugin but could not open the file. This is not a
permissions issue because the readability test was already checked
before the syntax check. The problem here most probably lies with the
web server being unable to execute the 'php -l <path-to-file.php>'
command.
This usually happens on shared hosting or other installations where
PHP suffers CLI execution limitations.

TOPICLISTS FOR
OSTICKET

 PAGE 23

You can confirm the problem programmatically by executing <php -l
'path-to-script.php'> which should return 'Could not open input file:
path-to-script.php'.

Solution: Since version 1.4.1, the user can disable syntax checking from the

plugin page. When disabled, Motherload will not conduct syntax
checking on your plugin scripts before trying to include and then
execute them. This should not be a major setback since most errors
are also caught and reported in the debugger when Motherload later
attempts to include the script.

Problem: 'HTTP ERROR 500' in the browser, with the following error showing in the

Motherload plugin page and/or in your web server log:
PHP Parse error: syntax error, unexpected 'const' (T_CONST),
expecting variable (T_VARIABLE) in
<PATH>/include/plugins/motherload/motherload.php on line 77

Description: Class constant visibility modifiers were introduced in PHP 7.1.0. Any
version before it will throw syntax error.
PHP implementations may come with limitations in functionality even if
the version is the same.

 .

Solution: Check and upgrade the PHP version on your server.
or
Replace 'public const' into 'const' on the line mentioned in the error.

TOPICLISTS FOR
OSTICKET

 PAGE 24

Problem: The following messages may appear in the Motherload plugin page:
Error::

ML::motherload - Plugin syntax error: Plugin '…\plugin_demo.php'
failed syntax checking and was not loaded.

Array

(

 [0] => 'php' is not recognized as an internal or external
command,

 [1] => operable program or batch file.

)

Or
Error::

ML::motherload - Plugin syntax error: Plugin '…\plugin_demo.php'
failed syntax checking and was not loaded.

Array

(

)

Description: As the message suggests, PHP is required but not being recognized.
Sometimes the webserver, IIS in this example, is not correctly
configured to run PHP.

 .

Solution: Make sure PHP is working properly on your server.
Some IIS users have reported that having installed "Microsoft Visual
C++ 2015 Redistributable Update 3", fixed their problem.
Their previous version of MSVC++ was making PHP itself fail (even
typing 'php' in cmd gave them an error).

TOPICLISTS FOR
OSTICKET

 PAGE 25

 Why choose Cartmega?

TOPICLISTS FOR
OSTICKET

 PAGE 26

Software disclaimer
Software developed by cartmega.com is provided 'as is' without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of fitness for a purpose, or the warranty of
non-infringement.

Without limiting the foregoing, cartmega.com makes no warranty that:

• the software will meet your requirements;
• the software will be uninterrupted, timely, secure or error-free;
• the results that may be obtained from the use of the software will be effective, accurate or reliable;
• the quality of the software will meet your expectations;
• any errors in the software obtained from the cartmega.com web site will be corrected.

Software and its documentation:

• could include technical or other mistakes, inaccuracies or typographical errors. cartmega.com may make changes to the software or documentation made available on its web site;
• may be out of date, and cartmega.com makes no commitment to update such materials;
• cartmega.com assumes no responsibility for errors or omissions in the software or documentation available.

In no event shall cartmega.com be liable to you or any third parties for any special, punitive, incidental, indirect or consequential damages of any kind, or any damages whatsoever, including, without limitation,
those resulting from loss of use, data or profits, whether or not cartmega.com has been advised of the possibility of such damages, and on any theory of liability, arising out of or in connection with the use of
this software.

The use of the software is at your own discretion and risk and with agreement that you will be solely responsible for any damage to your computer system or loss of data that results from such activities. No
advice or information, whether oral or written, obtained by you from cartmega.com or from the cartmega.com web site shall create any warranty for the software.

www.cartmega.com

http://www.cartmega.com/
https://www.cartmega.com/contact

	INTRODUCTION
	ONLINE DEMO
	INSTALLATION
	TESTING
	Client & Agent Side Demo
	Notification area
	Allowed Signals
	Enabled Plugins
	Valid Plugins
	Debugger
	Disable Plugin Syntax Checking
	Location
	Naming convention
	Compulsory variables & functions
	Plugin example (plugin_test.php)

	PLUGIN PAGE CONFIGURATION
	CUSTOM PLUGIN DEVELOPMENT
	Motherload Capabilities
	Functions
	Variables
	JQuery / Javascript

	TOPICLISTS
	SUPERLISTS
	LICENSE VERIFICATION
	SOLUTIONS TO PROBLEMS

